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Abstract

A new multi-layered model for fracture analysis of functionally graded materials (FGMs) with the arbitrarily

varying elastic modulus under plane deformation has been developed. The FGM is divided into several sub-layers and

in each sub-layer the shear modulus is assumed to be a linear function while the Poisson�s ratio is assumed to be a

constant. With this new model, the problem of a crack in a functionally graded interfacial zone sandwiched between

two homogeneous half-planes under normal and shear loading is investigated. Employment of the transfer matrix

method and Fourier integral transform technique reduce the problem to a system of Cauchy singular integral equations.

Stress intensity factors of the crack are calculated by solving the equations numerically. Comparison of the present new

model with other existing models shows some of its advantages.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The conventional composites in general are of discrete, piecewise nature with sharp interfaces. The
apparent mismatch in thermo-mechanical properties of the constituent materials may cause high residual

and thermal stresses on the interface and thus make them one of the main failure sources. To improve the

interfacial bonding strength and take the composite technology to full advantages, the newly developed

functionally graded materials (FGMs) with continuously varying properties have been intentionally in-

troduced as interfacial zones. Since Delale and Erdogan (1983), Eischen (1987) and Jin and Noda (1994)

have proposed and verified the square root character of the crack tip singular field in non-homogeneous

materials with continuously varying elastic modulus, many authors have been motivated to fracture

analysis of FGMs by directly adopting the concepts developed for fracture analysis of homogeneous
materials. Among them Erdogan and co-workers together with other authors used the model of the
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exponential function to simulate the elastic modulus (it will be referred to as Erdogan�s model in this paper)

and have investigated a series of crack problems in functionally graded interfacial zones (e.g., Delale and

Erdogan, 1988; Erdogan et al., 1991; Ozturk and Erdogan, 1993, 1995, 1996; Fildis and Yahsi, 1996, 1997;

Choi et al., 1998; Shbeeb and Binienda, 1999). Wang et al. (1996) used the power-law function to describe
the FGMs� properties, while Gao (1991) and Erg€uuven and Gross (1999) employed the perturbation ap-

proach to study the crack problem of non-homogeneous materials with properties of slight variation.

However, one of the obvious shortcomings for all those methods is that they cannot be used for the FGMs

with properties of arbitrary variation. Wang et al. (2000) and Itou (2001) used a piecewise multi-layered

model (PWML model) to study the fracture behavior of FGMs with arbitrarily varying properties. In this

model, constant elastic modulus in each sub-layer is assumed. This implies that the material properties are

still discontinuous at the sub-interfaces. To overcome the disadvantages of the models mentioned before,

Wang and Gross (2000) recently suggested a new multi-layered model for the static and dynamic fracture
analysis of FGMs with properties varying arbitrarily under anti-plane deformation. Based on the fact that

an arbitrary curve can be approached by a series of continuous piecewise linear curves, the FGMs are

modeled as a multi-layered medium with the elastic modulus varying linearly in each sub-layer and con-

tinuous on the sub-interfaces. Later Wang et al. (2003) and Huang et al. (2002) presented detailed calcu-

lations to demonstrate the advantages of the model for the anti-plane deformation. In this paper, we will

extend the new multi-layered model to an FGM interfacial zone under plane deformation. As we know, the

mathematics involved in the plane problems is much more difficult.
2. Formulation of the problem

2.1. The new multi-layered model for fracture analysis of FGMs and basic equations

Consider a functionally graded interfacial zone of thickness h0 sandwiched between two homogeneous

half-planes. A through crack of length 2c lies parallel to the interface in the interfacial zone as shown in Fig.

1a. Generally the shear modulus lðyÞ and the Poisson�s ratio tðyÞ of the coating may be described by two
arbitrary continuous functions of y with boundary values lðh0Þ ¼ l0, tðh0Þ ¼ t0, lð0Þ ¼ l� and tð0Þ ¼ t�
(a) (b)

Fig. 1. A FGM interfacial zone sandwiched between two homogeneous half-planes (a); and the new multi-layered model for the FGM

interfacial zone (b).



G.-Y. Huang et al. / International Journal of Solids and Structures 41 (2004) 731–743 733
where l� and t� are, respectively, the shear modulus and Poisson�s ratio of the lower homogenous half-

plane, and l0 and t0 are those of the upper half-plane. However, previous studies (see Chen and Erdogan,

1996; Wu and Erdogan, 1996; Choi, 1997) have shown that the influence of the variation in Poisson�s ratio
on stress intensity factors is rather insignificant. Therefore, as they did, we assume the Poison�s ratio is the
same constant for both the graded interfacial zone and the two half-planes. Considering the fact that an

arbitrary curve can be approximated by a continuous piecewise linear curve, we develop a new multi-

layered model as shown in Fig. 1b. In this model, the graded interfacial zone is divided into N sub-layers

with the crack on the kth sub-interface (k may be any integer between 1 and N ). The shear modulus in the

graded zone varies linearly in each sub-layer and is continuous at the sub-interfaces, i.e.,
lðyÞ � ljðyÞ ¼ �llj � ðaj þ bjyÞ; hj < y < hj�1; j ¼ 1; 2; . . . ;N ; ð1Þ
where �llj is equal to the real value of the shear modulus at the sub-interface, y ¼ hj, i.e., �llj ¼ ljðhjÞ ¼ lðhjÞ
which leads to
aj ¼
hj�1 � hj�llj�1=�llj

hj�1 � hj
; bj ¼

�llj�1=�llj � 1

hj�1 � hj
: ð2Þ
If one introduces Airy stress function /j (j ¼ 0; . . . ;N þ 1), it can be easily found that the elastic behavior

of the sub-layers of the graded zone under plane strain state is governed by the following compatibility
equation
1� t�

2ljðyÞ
r4/j �

�lljbjð1� t�Þ
l2
j ðyÞ

o3/j

oy3

 
þ
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½�lljbj�
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#
¼ 0; j ¼ 1; . . . ;N ;

ð3Þ

while those for the two homogeneous half-planes are controlled by
r4/0 ¼ 0; r4/Nþ1 ¼ 0: ð4Þ

The present crack problem can be viewed as the superposition of the following two sub-problems: (i) the

system free of cracks is subjected to remote loading, inducing shear and tensile tractions r1ðxÞ and r2ðxÞ at
y ¼ hk; (ii) the crack face is loaded under �r1ðxÞ and �r2ðxÞ without the remote loads. Since problem (i)

contributes nothing to the singular fields at the crack tips, we will pay attention only to problem (ii) treating

�r1ðxÞ and �r2ðxÞ as known functions. Further we denote the displacement jumps across the crack plane as

Duxk and Duyk . Thus, the condition of the continuity of the displacements and stresses on the interfaces free

of crack (i.e., y ¼ hj (j ¼ 0; . . . ;N þ 1; j 6¼ k)) can be stated as
uxjðx; hjÞ ¼ uxjþ1ðx; hjÞ; ð5Þ

uyjðx; hjÞ ¼ uyjþ1ðx; hjÞ; ð6Þ

rxyjðx; hjÞ ¼ rxyjþ1ðx; hjÞ; ð7Þ

ryyjðx; hjÞ ¼ ryyjþ1ðx; hjÞ; ð8Þ

and on the crack plane, we have
uxkðx; hkÞ � uxkþ1ðx; hkÞ ¼ DuxkðxÞHðc2 � x2Þ; ð9Þ

uykðx; hkÞ � uykþ1ðx; hkÞ ¼ DuykðxÞHðc2 � x2Þ; ð10Þ

rxykðx; hkÞ ¼ rxykþ1ðx; hkÞ; jxj > c; rxykðx; hkÞ ¼ �r1ðxÞ; jxj6 c; ð11Þ
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ryykðx; hkÞ ¼ ryykþ1ðx; hkÞ; jxj > c; ryykðx; hkÞ ¼ �r2ðxÞ; jxj6 c; ð12Þ

with Hð Þ being the Heaviside function.
2.2. Transfer matrix and dual integral equations

Subject Eq. (3) to Fourier integral transform with respect to x, then it becomes
1� t�

2ljðyÞ
d2

dy2

�
� s2

�2

~//j �
�lljbjð1� t�Þ

l2
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þ t�s2 ~//j

#
¼ 0; ð13Þ
with ��� standing for the Fourier integral transform. If the following substitutes are introduced:
nj ¼ 2sðaj þ bjyÞ=bj; ~//jðnjÞ ¼ fjðnjÞnj=2; ð14Þ
Eq. (13) then is reduced to
d4fj
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fj ¼ 0; ð15Þ
where c ¼ ½ð1� 2t�Þ=ð2� 2t�Þ�1=2. The general solutions for Eq. (15) are Whittaker functions (Slater, 1960),

i.e.,
fjðnjÞ ¼ Aj1Wc;1:5ðnjÞ þ Aj2W�c;1:5ðnjÞ þ Aj3Wc;�1:5ðnjÞ þ Aj4W�c;�1:5ðnjÞ; ð16Þ
from which, together with Eq. (14), we obtain the transformed Airy stress function in each sub-layer as
~//jðnjÞ ¼ Aj1Wc;1:5ðnjÞ
�

þ Aj2W�c;1:5ðnjÞ þ Aj3Wc;�1:5ðnjÞ þ Aj4W�c;�1:5ðnjÞ
�
nj=2

¼d: Aj1
~//j1ðnjÞ þ Aj2

~//j2ðnjÞ þ Aj3
~//j3ðnjÞ þ Aj4

~//j4ðnjÞ: ð17Þ
The transformed displacement and stress components consequently can be written in the following matrix

form
fSjðyÞg ¼ ½TjðyÞ�fAjg ¼ ½Tj1ðyÞ; Tj2ðyÞ; Tj3ðyÞ; Tj4ðyÞ�fAjg; ð18Þ

where
fSjg ¼ ½~uuxj; ~uuyj; ~rrxyj; ~rryyj�T;

fAjg ¼ ½Aj1;Aj2;Aj3;Aj4�T;

TjlðyÞ ¼ ½Tjl1ðyÞ; Tjl2ðyÞ; Tjl3ðyÞ; Tjl4ðyÞ�T;

with
Tjl1ðyÞ ¼
�i

2ljðyÞs
ð1� t�Þ

d2 ~//jlðyÞ
dy2

� it�s
2ljðyÞ

~//jlðyÞ;

Tjl2ðyÞ ¼
1� t�

2ljðyÞs2
d3 ~//jlðyÞ
dy3

�
�lljbjð1� t�Þ
2l2

j ðyÞs2
d2 ~//jlðyÞ
dy2

� 2� t�

2ljðyÞ
d ~//jlðyÞ
dy

�
�lljbjt

�

2l2
j ðyÞ

~//jlðyÞ;

Tjl3ðyÞ ¼ �is
d ~//jlðyÞ
dy

; Tjl4ðyÞ ¼ �s2 ~//jlðyÞ; l ¼ 1; 2; 3; 4:
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The superscript ‘‘T’’ in the above equations denotes the transposition of a matrix. Eq. (4) for the homo-

geneous half-planes can be solved similarly. For simplicity, we directly write the displacements and stresses

in two half-planes as
fS0ðyÞg ¼ ½T0ðyÞ�fB1gfA0g; fSNþ1g ¼ ½TNþ1ðyÞ�fB2gfANg; ð19Þ
where
fB1g ¼ 1 0 0 0

0 1 0 0

� �T
; fB2g ¼ 0 0 1 0

0 0 0 1

� �T
;

fA0g ¼ ½A01;A02�T; fANg ¼ ½AN1;AN2�T;

½TjðyÞ� ¼ ½Tj1ðyÞ; Tj2ðyÞ�; ðj ¼ 0 or N þ 1Þ;
with
½Tj1ðyÞ� ¼
s=2ilj jsj=2lj �is �s2

½ys� 2ð1� t�Þjsj=s�=2ilj ð1� 2t� þ yjsjÞ=2lj �isð1� yjsjÞ �s2y

� �T
expð�jsjyÞ;

½Tj2ðyÞ� ¼
s=2ilj �jsj=2lj �is �s2

½ysþ 2ð1� t�Þjsj=s�=2ilj ð1� 2t� � yjsjÞ=2lj �isðyjsj þ 1Þ �s2y

� �T
expðjsjyÞ;
and lj ¼ l0 for j ¼ 0 and lj ¼ l� for j ¼ N þ 1. Making use of Eqs. (5)–(12), one may have
fSjg � fSjþ1g ¼ fDSkgdkj; y ¼ hj; j ¼ 1; 2; . . . ;N ; ð20Þ
in which dkj is the Kronecker delta and fDSkg ¼ ½D~uuxk;D~uuyk; 0; 0�T with D~uuxk and D~uuyk being the Fourier

transforms of the jumps of the displacements across the crack face.

Eq. (20) in essence is a recurrence relation that, in combination with Eqs. (18) and (19), can yield fAjg in

terms of fDSkg
fAjg ¼ ð½Ljk� þ ½Kjk�Hðj� k � 1ÞÞfDSkg; j ¼ 1; 2; . . . ;N ; ð21Þ
where
½Wj� ¼ ½TjðhjÞ��1½Tjþ1ðhjÞ�; ½W � ¼ fB1gfB1gT � ½W N �fB2gfB2gT;

½Lk� ¼ ½W k�½Tkþ1ðhkÞ��1
; ½W j� ¼ ½W0�½W1� � � � ½Wj�; ½W 0� ¼ ½W0�;

½Ljk� ¼ ½W j�1��1½Ek�; ½Kjk� ¼ �½W j�1��1½Lk�; ½Ek� ¼ fB1gfB1gT½W ��1½Lk�;
where ½TjðhjÞ��1
refers to the inversion of the 4 · 4 matrix ½TjðhjÞ�. Upon substituting of Eq. (21) into (18)

and applying the inverse Fourier transform, one obtains
fuxj; uyj; rxyj;ryyjgT ¼ 1

2p

Z 1

�1
½Mjk�fDSkg expðisxÞds; j ¼ 1; 2; . . . ;N ; ð22Þ
where we have denoted
½Mjk� ¼ ½TjðyÞ�ð½Ljk� þ ½Kjk�Hðj� k � 1ÞÞ; ð23Þ
which is none other than the transfer matrix for the multiple layered medium. Extracting the stress com-

ponents from Eq. (22), we have
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frxyj; ryyjgT ¼ 1

2p

Z 1

�1
�mmðs; yÞfD~uuxk;D~uuykgT expðisxÞds; j ¼ 1; 2; . . . ;N ; ð24Þ
where �mmðs; yÞ ¼ ½B2�T½Mjk�½B1�. Satisfaction of Eq. (24) with the boundary conditions (11) and (12) gives
1

2p

Z 1

�1
�mmðs; hkÞfD~uuxk;D~uuykgT expðisxÞds ¼ �fr1ðxÞ; r2ðxÞgT; jxj6 c: ð25Þ
The single-valued condition for displacement components yields
Z 1

�1
fD~uuxk;D~uuykgT expðisxÞds ¼ 0; jxj > c; ð26Þ
Eqs. (25) and (26) are dual integral equations for the present problem.

2.3. Cauchy singular integral equations

If the following dislocation density functions are introduced:
w1ðxÞ ¼
o

ox
ðDuxkÞ; w2ðxÞ ¼

o

ox
ðDuykÞ; jxj6 c; ð27Þ
Eqs. (25) and (26) can be rewritten as
1

2pi

Z 1

�1
s�1 �mmðs; hkÞ

Z c

�c
fw1ðvÞ;w2ðvÞg

T
exp½isðx� vÞ�duds ¼ �fr1ðxÞ; r2ðxÞgT; jxj6 c; ð28Þ

Z c

�c
fw1ðvÞ;w2ðvÞg

T
dv ¼ 0: ð29Þ
It can be proved that s�1 �mmðs; hkÞ possesses the following asymptotic behavior if one resorts to the behavior

of Whittaker functions (Slater, 1960):
lim
s!þ1

s�1 �mmðs; hkÞ ¼
�a1 0

0 �a1

� �
; ð30Þ
with a1 ¼ �llk=ð2� 2t�Þ. Furthermore the elements of �mmðs; hkÞ behave as
�mmjlð�sÞ ¼ ð�1Þjþl �mmjlðsÞ; j; l ¼ 1; 2: ð31Þ

Then, using the relation
Z þ1

�1
sgnðsÞ exp½isðv� xÞ�ds ¼ 2i

v� x
; ð32Þ
we convert Eq. (25) into the following Cauchy singular integral equations:
Z c

�c

a1=ðv� xÞ 0

0 a1=ðv� xÞ

� ��
þ Q11ðv; xÞ Q12ðv; xÞ

Q21ðv; xÞ Q22ðv; xÞ

� ��
w1ðvÞ
w2ðvÞ

� �
du

¼ �p
r1ðxÞ
r2ðxÞ

� �
; jxj6 c; ð33Þ
where
Qjlðv; xÞ ¼ �
Z 1

0

½s�1 �mmjlðsÞ þ a1� sin½sðv� xÞ�ds; j ¼ l;
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Qjlðv; xÞ ¼
Z 1

0

ðisÞ�1 �mmjlðsÞ cos½sðv� xÞ�ds; j 6¼ l:
It can be proved that �mm12ðsÞ and �mm21ðsÞ have the asymptotic behavior
lim
s!1

�mm12ðsÞ ¼ � lim
s!1

�mm21ðsÞ ¼ �a2; ð34Þ
with a2 ¼ ið�llk�1bk�1 þ �llkbkÞ=ð8� 8t�Þ. So Q12ðv; xÞ and Q21ðv; xÞ can be rewritten as
Qjlðv; xÞ ¼
Z s1

0

ðisÞ�1 �mmjlðsÞ cos½sðv� xÞ�dsþ
Z 1

s1

ðisÞ�1½�mmjlðsÞ � ð�1Þja2� cos½sðv� xÞ�ds;

þ ið�1Þja2
Z js1ðv�xÞj

0

ðcos t�Þt�1 dt
where s1 is a positive constant to be determined by numerical tests and c0 is the Euler�s constant. It is worth
pointing out that if t� in all above equations is replaced with t�=ð1þ t�Þ, we can get the formulation for the

plane stress-state problem.

Eq. (25) together with (21) can be numerically solved by the method of Erdogan and Gupta (1972).

Noting that the dislocation density functions have the square-root singularity at the crack tips, we can

express them as
w1ðvÞ ¼
f1ðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðv=cÞ2
q ; w2ðvÞ ¼

f2ðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q : ð35Þ
Discretize v and x in the following manner:
vl ¼ c cos
p
2M

ð2l� 1Þ; l ¼ 1; . . . ;M ; ð36Þ

xr ¼ c cos
pr
M

; r ¼ 1; . . . ;M � 1; ð37Þ
and then we have
c
M

XM
l¼1

a1fjðvlÞ
vl � xr

(
þ
X2
n¼1

fnðvlÞQjnðvl; xrÞ
)

¼ �rjðxrÞ; j ¼ 1; 2; ð38Þ

1

M

XM
1

fjðvlÞ ¼ 0; j ¼ 1; 2: ð39Þ
The stress intensity factors (SIFs) at the crack tips are defined as
K�
I ¼ lim

x!�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jx� cj

p
ryyðx; hkÞ; K�

II ¼ lim
x!�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jx� cj

p
rxyðx; hkÞ; ð40Þ
which can be calculated by
K�
I ¼ �a1

ffiffiffi
c

p
f2ð�cÞ; K�

II ¼ �a1
ffiffiffi
c

p
f1ð�cÞ: ð41Þ
3. Numerical examples and discussion

To verify the effectiveness of the present new model, we first consider the case that the shear modulus of
the functionally graded coating can be described by Erdogan�s model, i.e.,
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lðyÞ ¼ l� expðbyÞ; ð42Þ

where b ¼ logðl0=l

�Þ=h0. Throughout the paper the Poisson�s ratio is taken as t� ¼ 0:3 and either r1ðxÞ or
r2ðxÞ is set to be a constant and equal to r0. In this case, the crack problem can be solved by directly using

Erdogan�s model yielding more accurate results. In order to solve the problem by using the present new

model, we have to determine how many sub-layers are necessary for the results to be sufficiently accurate.

To this end, we have calculated the SIFs of a midline crack (i.e., hk ¼ h0=2) with l�=l0 ¼ 1:88=0:45,
c=h0 ¼ 1:0 and 5.0 for different values of N under shear loading. Results are given in Table 1 where the SIFs
have been normalized by r0c1=2. From Table 1, one can see that with the increase of N , the results are

increasingly close to each other. And the results with N ¼ 4 or 6 may be considered sufficiently accurate. So

for this example, we will choose the number of the sub-layers to be 6.

Figs. 2 and 3 present the SIFs of a midline crack obtained by the present model, Erdogan�s model and

PWML model with N ¼ 6 as a variation of c=h0 for l�=l0 ¼ 20 under normal and shear loading respec-

tively. For the solution process of Erdogan�s model, refer to Choi et al. (1998) or Shbeeb and Binienda

(1999), while for that of the PWML model, refer to Wang et al. (2000) or Itou (2001). Figs. 2 and 3 show

clearly that the results of the present model (the scattered crosses) are in good agreement with those of the
Erdogan�s model (the solid line), while those of the PWML model (the scattered squares) deviate from them

considerably. So we may conclude that the present model is more efficient than the PWML model, which

can be further verified from Figs. 4 and 5 where the SIFs of an interface crack (i.e., hk ¼ 0) are given as a

variation of c=h0 for l�=l0 ¼ 20 under normal and shear loading respectively.
1

of N on SIFs of a midline crack in a FGM interfacial zone under shear loading with l�=l0 ¼ 1:88=0:45 (exponential variation)

c=h0 ¼ 1:0 c=h0 ¼ 5:0

KI=r0c1=2 KII=r0c1=2 KI=r0c1=2 KII=r0c1=2

0.1551846 0.9964912 0.2211133 1.0356900

0.1545255 1.0065845 0.2206882 1.0365365

0.1545192 1.0091211 0.2235252 1.0495061

0.1545104 1.0099517 0.2240124 1.0518444

0.1545057 1.0103222 0.2241178 1.0523903

(a)
(b)

Normalized SIFs for a midline crack in a FGM interfacial zone under shear loading, exponential variation. (a) Mode I SIFs;

) Mode II SIFs.



(a) (b)

Fig. 3. Normalized SIFs for a midline crack in a FGM interfacial zone under normal loading, exponential variation. (a) Mode I SIFs;

and (b) Mode II SIFs.

(a)
(b)

Fig. 4. Normalized SIFs for an interface crack in a FGM interfacial zone under normal loading, exponential variation. (a) Mode I

SIFs; and (b) Mode II SIFs.
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As mentioned before, one of the advantages of the present model over other models is that it can be used

for the FGMs with shear modulus varying arbitrarily and involves no discontinuity of the properties.

Therefore, as an example, we consider the shear modulus of the interfacial zone varying in the sinusoidal

form:
lðyÞ ¼ l� þ ðl0 � l�Þ sinðpy=2h0Þ: ð43Þ
Taking l�=l0 ¼ 1:88=0:45, we have calculated the SIFs of a midline crack for different N under shear

loading. The results are listed in Table 2. It is shown clearly that the results for N ¼ 6 can be reckoned
sufficiently accurate. Therefore we choose N ¼ 6 in the following calculation. The SIFs for a midline crack



(a) (b)

Fig. 5. Normalized SIFs for an interface crack in a FGM interfacial zone under shear loading, exponential variation. (a) Mode I SIFs;

and (b) Mode II SIFs.

Table 2

Effect of N on SIFs of a midline crack in a FGM interfacial zone under shear loading with l�=l0 ¼ 1:88=0:45 (sinusoidal variation)

N c=h0 ¼ 1:0 c=h0 ¼ 5:0

KI=r0c1=2 KII=r0c1=2 KI=r0c1=2 KII=r0c1=2

2 0.1538333 0.9838516 0.2175648 1.0146287

4 0.1589588 1.0013367 0.2210860 1.0258443

6 0.1599181 1.0049592 0.2216323 1.0282008

8 0.1602642 1.0062614 0.2217993 1.0289274

10 0.1604306 1.0068762 0.2219043 1.0293858

(a) (b)

Fig. 6. Normalized SIFs for a midline crack in a FGM interfacial zone under normal loading, sinusoidal variation in comparison with

the exponential variation. (a) Mode I SIFs; and (b) Mode II SIFs.
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(a) (b)

Fig. 7. Normalized SIFs for a midline crack in a FGM interfacial zone under shear loading, sinusoidal variation in comparison with the

exponential variation. (a) Mode I SIFs; and (b) Mode II SIFs.
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under normal and shear loading with l�=l0 ¼ 20 have been plotted in Figs. 6 and 7 respectively. For the
purpose of comparison, results for the exponential shear modulus are replotted by the dashed lines. It is

shown that the SIFs for the two forms of the shear modulus are different from each other. This is due to the

different variations of the shear modulus in the functionally graded interfacial zone. To further shed light

on this, we have calculated the SIFs for an interface crack under normal and shear loading. The results are

demonstrated in Figs. 8 and 9 which show clearly that the SIFs of the two forms of the shear modulus are

still different from each other especially when the crack is under shear loading (see Fig. 9b). The values of

the shear modulus for the two forms in this case are identical on the interface, so we can conclude that the

form of the shear modulus can influence the SIFs much, which necessitates the present model for fracture
analysis of FGMs with arbitrarily varying properties.
(a) (b)

Fig. 8. Normalized SIFs for an interface crack in a FGM interfacial zone under normal loading, sinusoidal variation in comparison

with the exponential variation. (a) Mode I SIFs; and (b) Mode II SIFs.



(a) (b)

Fig. 9. Normalized SIFs for an interface crack in a FGM interfacial zone under shear loading, sinusoidal variation in comparison with

the exponential variation. (a) Mode I SIFs; and (b) Mode II SIFs.
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4. Concluding remarks

In this paper, we have generalized the multi-layered model for anti-plane fracture analysis of FGMs with
arbitrary form of shear modulus developed by Wang and Gross (2000) and Wang et al. (2003) to the plane

deformation. Taking a functionally graded interfacial zone bonded to two homogeneous half-planes as an

example, we have calculated the SIFs of a midline crack and an interface crack for the shear modulus of the

interfacial zone varying in an exponential manner and in a sinusoidal manner. From the numerical results,

we could find:

(1) The present model is very efficient in solving the crack problems of the FGMs. Generally 4–6 sub-layers

can yield sufficiently accurate results.
(2) The advantage of the present model over Erdogan�s model lies in the fact that the present model can be

used to fracture analysis of the FGMs with arbitrarily varying elastic properties.

(3) The present model also has advantages over the PWML-model. On one hand, the present model in-

volves no discontinuities of the material properties while the PWML model does. On the other hand,

the present model is more efficient than the PWML model in simulating the FGMs because the present

model requires fewer sub-layers than the PWML-model to yield sufficiently accurate results.

(4) The form of shear modulus can influence the SIFs of cracks in the functionally graded interfacial zone.
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